

Insure or Invest in Green Technologies to Protect Against Adverse Weather Shocks ?

Sami Myyrä¹ Kyösti Pietola²

MTT Agri Food Research Finland

1) Principal Research Scientist, PhD, Latokartanonkaari 9, FI-00790 Helsinki, Finland. Telephone: +358-40-5515904 email: <u>sami.myyra@mtt.fi</u>

2) Professor, Latokartanonkaari 9, FI-00790 Helsinki, Finland.

Insure or Invest in Green Technologies to Protect Against Adverse Weather Shocks ?

Outline

- Introduction
- Methods used
- Results
- Conclusions

Forecast of weather related yield losses in Finland

Introduction

- Farmers have possibilities to protect against adverse weather events:
 - Green investments increase productivity while also reduce yield risks in agriculture. Example: Land improvements, drainage and irrigation systems.
 - Tradable financial services like traditional yield insurances and index based insurances for short term risk management. Heavy policy measures are used to promote these programs (subsidies).
- The idea of this paper is to analyse trade-offs between the adaptation of traditional crop yield insurance and index based insurance regarding incentives to invest in green technologies.
- Should government put subsidies on traditional crop yield insurances or index based insurances to promote green investments?

- Outputs are inspected at the farm.
- Farmers carry significant yield risks by themselves due to the 30% straight deductible that is computed from the output of whole farm.
- Monitored farm yield is compared to regional yield average.
- Farmers producing larger and more valuable than average yields cannot upgrade their protection to better reflect their true risk position.

Index insurances

- Index based insurances are based on yield or weather indexes that are measured on regional level
- Index value triggers the indemnity payment and costly farm level monitoring is unnecessary.
- "Basis risk" is present

Investments in green technologies

- Overdo the natural depreciation (1% per year)
- Increase productivity and reduce yield risks
- Farmer's investment behaviour is studied by his current productivity level

Loading on insurance schemes

- Fair, in this case the price of the contract equals the expected pay-off.
- Loading implies that insurance companies expenses and profit expectation (+) as well as subsidies (-) are counted in to the price.
- If net loading (-), insurance is subsidised more than insurance companies load it. (insurance is profitable for farmer)

Methods

- Our economic model represents a grain farmer
 - One period (year) returns are described and augmented by the indemnity function of alternative insurance options and returns are described:

$$\tilde{\pi}_{t} = \left\{ \tilde{y}_{t} x_{t} + d_{t}^{\psi} \left[\tilde{n}_{t}^{\psi} - (1 + \lambda)(1 - \mu) p_{t}^{\psi} \right] \right\} p_{t}^{y} - MC_{t} + S_{t} - u_{t} p_{t}^{u}$$

• Years are stacked together into the dynamic optimization framework using Bellman equation (Bellmann 1957).

$$V(U_{t} | \psi) = \max_{\{u, \text{cov}\, er, scale\}} \left\{ E_{t}[U_{t+\tau}(\pi) | x_{t}, \mathcal{E}_{t}, \psi] + \beta E_{t}[V_{t+1}(U_{t+1}) | \psi)] \right\}, \quad t \leq T - 1, 0 < \tau < 1$$

 Farmer can shift the mean productivity x_t and compress the stochastic spread of the productivity process through real investments. Normalized to 0 ... 0.3.

$$x_{t+1} = (1 - \rho)(1 + u_t)x_t + \varepsilon_{t+1}$$

• The resulting optimization problem is then simulated with alternative policy and risk scenarios such as premium supports, loading rates, and basis risk.

Results, **loading** = fair

Investments conditional on productivity under the cases of no insurance, traditional yield insurance and fair index insurance. There is a perfect correlation between the yield and the index.

Investment under traditional yield insurance conditional on productivity and alternative net loading rates.

Results, basis risk

Scale of index insurance conditional on the correlation between the index and the yield. Net loading is imposed at 10%.

Conclusions

- The results suggest that index insurance maintains market-based incentives to invest in green technologies, whereas traditional yield insurance substantially decreases investments.
- It is dangerous to subsidise traditional yield insurances, because farmers operating lower than average productivity have incentives to give up green investments.
- Index insurances remains farmers incentives to invest in green technologies.
- Basis risk decreases farmers interest over index insurances and they scale insurances down.